Choosing mechanics principles (no fluids) Typical inspirations

Typical Ilispirations					
Time(s)	t_i and t_f				
System size(s)	Point-like (bubble + dot)	Point-like (bubble + dot) Extended (bubble)			
Axes	xy	AOR			
Purpose(s)	Predict motion				
Mathematical attentiveness	Keep track of signs and directions				
Type of modeling	Kinematics				
Typical categories	Linear motion	Rotational motion			
Typical starting recipes	Always true:	Always true:			
	$x_i + v_{x,AVG}\Delta t = x_f$ $v_{x,i} + a_{x,AVG}\Delta t = v_{x,f}$	$ heta_i + \omega_{ ext{AVG}} \Delta t = heta_f \ \omega_i + lpha_{ ext{AVG}} \Delta t = \omega_f$			
	1st check for constant a_x :	1 st check for constant α :			
	$x_i + v_{x,i}\Delta t + \frac{1}{2}a_x\Delta t^2 = x_f$	$\theta_i + \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2 = \theta_f$			
	$v_{x,i}^2 + 2a_x \Delta x = v_{x,f}^2$	$\omega_i^2 + 2\alpha\Delta\theta = \omega_f^2$			
	For SHM, $a_x = -\omega_{SHM}^2 x$	For SHM, $\alpha = -\omega_{SHM}^2 \theta$			
Typical organizing layouts	Motion diagram	Rotational motion diagram			
Typical follow-up recipes	$t_{i} = \frac{x_{i} = y_{i} = y_{i}}{v_{x,i} = v_{y,i} = \frac{v_{x,i} = v_{y,i} = v_{x,i}}{t_{i} < t < t_{f}}$ $a_{x} = a_{y} = \frac{t_{f} = y_{f} = v_{x,i} = v_{y,i} = v_{x,i}}{v_{x,i} = v_{y,i} = v_{x,i}}$ $x-t \text{ plot, } v_{x}-t \text{ plot, } a_{x}-t \text{ plot}$	$\begin{array}{c} t_i = \\ \hline \theta_i = \\ \hline \omega_i = \\ \hline t_i < t < t_f \\ \hline \alpha = \\ \hline t_f = \\ \hline \theta_f = \\ \hline \omega_f = \\ \hline \theta - t \text{ plot, } \omega - t \text{ plot} \\ \hline \Delta \theta & \Delta \theta \\ \hline \end{array}$			
Typical follow-up recipes	$v_{x,AVG} = \frac{\Delta x}{\Delta t}$ $v_x = \frac{\Delta x}{\Delta t_{BRIEF}}$ $a_{x,AVG} = \frac{\Delta v_x}{\Delta t}$ $a_x = \frac{\Delta v_x}{\Delta t_{BRIEF}}$	$\omega_{ ext{AVG}} = rac{\Delta heta}{\Delta t}$ $\omega = rac{\Delta heta}{\Delta t_{ ext{BRIEF}}}$ $lpha_{ ext{AVG}} = rac{\Delta \omega}{\Delta t}$ $lpha = rac{\Delta \omega}{\Delta t_{ ext{BRIEF}}}$			
	Go from plot to plot, left-to-right: Use ta Go from plot to plot, right-to-left: Use si $T_{\rm SHM} = \frac{2\pi}{\omega_{\rm SHM}}$				

Choosing mechanics principles (no fluids) Typical inspirations

Typical ilispirations						
Time(s)	t					
System size(s)	Point-like (bu	Point-like (bubble + dot) Extended (rigid, bubble)				
Axes	xy	+in and +tan	AOR			
Purpose(s)		ns				
Mathematical attentiveness	Keep track of signs and directions					
Type of modeling	Dynamics					
Typical categories	Forces (linear dynamics)	Forces (circular motion)	Torques (rotational dynamics)			
Typical starting recipes	$a_x = rac{\sum F_x}{m_{ m I}}$ N2L	$a_{ ext{IN}} = rac{\sum F_{ ext{IN}}}{m_{ ext{I}}}$ N2L	$\alpha = \frac{\sum \tau}{I}$ N2L for rotational motion			
Typical organizing layouts	Force diagram Cartesian force components chart Force $\left F_{x} \right F_{y}$	Force diagram Inward (and tangential) force components chart	Force diagram with forces originating from points of application Force and torque chart			
	$\sum F$	Force F_{IN} F_{TAN}	Force F_x F_y r_\perp F τ			
Typical follow-up recipes		$a_{\rm IN} = \frac{v^2}{r}$	$\tau = r_{\perp}F$ $r_{\perp} = r \sin \theta \text{ is the distance of closest approach on the line of action of the force of interest}$ $I = \sum mr_i^2$			
	Gravitational attractions: $F_{G,E\to SYS} = m_{G,SYS}g \qquad F_{N,SUR\to SYS} \text{ corresponds to a \perp press}$ $F_{G,1\to 2} = G\frac{m_1m_2}{r_{12}^2} \qquad F_{T,STRING\to SYS} \text{ corresponds to a pull}$ Kinetic friction force opposes occurring slippage: $f_{K,SUR\to SYS} = \mu_{K,SUR\&SYS}F_{N,SUR\to SYS}$ Static friction force opposes threatened slippage:					
	$f_{S,SUR \to SYS} \le f_{S,SUR \to SYS}^{MAX} = \mu_{S,SUR \& SYS} F_{N,SUR \to SYS}$					

Choosing mechanics principles (no fluids) Typical inspirations

Typical IIISpii	alions				
Time(s)			t_i	and t_f	
System	Point-like (bubble + dot)				
size(s)	Extended (bubble)				
Axes	xy		AOR	xy	
				AOR	
Purpose(s)			Explain	contributions	
Mathematical attentiveness	Keep track of signs and directions			Work mostly with scalars	
Type of	Concernation laws				
modeling		Conservation laws			
Typical categories	Impulse- momentum	_	impulse- nomentum	Work-Energy	
Typical	$\sum p_{i,x} + \sum J_{x} = \sum p_{f,x}$	$\sum L_i + \sum \tau_{AN}$	$U_{\text{VG}}\Delta t = \sum L_f$		
starting recipes	Impulse-	_	impulse-	$K_i + U_{G,i} + U_{S,i} + W = K_f + U_{G,f} + U_{S,f} + \Delta U_{INT}$	
recipes	momentum theorem	angular momentum		Generalized work-energy principle	
Typical	Momentum bar	theorem Angular-momentum		Energy bar chart	
organizing	chart	bar chart	omentam	Lifetgy bar chart	
layouts					
	Momentum vector				
	diagram				
	Momentum				
	components chart				
Typical	$p_x = mv_x$	L _{PARTICLE.C}	$_{5}=\pm mvr_{\perp}$	$K_{\text{PARTICLE}} = \frac{1}{2}mv^2$ $K_{\text{SKEWER}} = \frac{1}{2}I\omega^2$	
follow-up		$L_{\circlearrowleft} =$		SKEWER 2	
recipes	$J_{x} = F_{\text{AVG},x} \Delta t$	$I = \sum_{i=1}^{n} I_i$	$\sum mr_i^2$	$K_{\text{RIGID}} = \frac{1}{2}Mv_{\text{COM}}^2 + \frac{1}{2}I_{\text{ABOUT}}\omega^2$	
	$J_x = $ Area between			EXTENDED 2 COM	
	F_x -t plot and t axis	to and t axis $\sum au_{ ext{AVG}} \Delta t = ext{Area}$ between $\sum au au t$ plot and t axis		$U_{G,E\&SYS} = m_{G,SYS}gh$ $II = \frac{1}{2} k \Delta x^2$	
				$O_S = \frac{1}{2} \kappa \Delta x$	
	$M_{X_{}} - m_{-X_{-}}$	Į.	⊥ m v	$U_{G,1\&2} = -G \frac{m_1 m_2}{r_{12}} \qquad \Delta U_F = -W_F$	
	$Mx_{\text{COM}} = m_1x_1 + m_2x_2 + \dots + m_Nx_N$ $Mv_{\text{COM},x} = m_1v_{1,x} + m_2v_{2,x} + \dots + m_Nv_{N,x}$			/12	
	$Ma_{\text{COM},x} = m_1 v_{1,x} + m_2 v_{2,x} + \cdots + m_N v_{N,x}$ $Ma_{\text{COM},x} = m_1 a_{1,x} + m_2 a_{2,x} + \cdots + m_N a_{N,x}$,	$W = (F\cos\theta)_{AVG}d$	
	1.10COM, x131, x232, x		· · · · · · · · · · · · · · · · · · ·	W_{F_x} = Area between F_x - x plot and x axis	
				$W_{ au} = au_{ ext{AVG}} \Delta heta$	
				W_{τ} = Area between τ - θ plot and θ axis	
				$W = P_{\text{AVG}} \Delta t \qquad P = (F \cos \theta) v$	
				$P_{\text{AVG}} = \frac{W}{\Delta t} \qquad P = \tau \omega$	
				Δt	
				$\Delta U_{ m INT}$ doesn't have a memory formula	
				Adjust documentate a memory formula	

Page 3 of 3 DAVIDLIAO.COM